Semi-global and local
alignment and gap penalties

@/UNIVERSITY(])S fffffff
P 1 A lz‘fl A P] ides with * courtesy of Carl Kingsford

Maximization vs. Minimization

Edit distance:

cost(z;,y;) + OPT(i — 1,5 — 1) match xi, y;
Coap + OPT (i — 1, 7) Xi is unmatched
Coap + OPT(7,7 — 1) yj is unmatched

OPT(7,j) = min

Sequence Similarity: replace the min with a max — tind the highest-scoring
alignment. Gap costs and bad matches usually get a negative “score”.

score(x;,y,;) + OPT(¢ —1,7 — 1)
OPT(i, j) = max { szap + OPT(i — 1, §)
Sgap = OPT(Zaj o 1)

gap penalty = gap score (probably negative)
match cost = match score

Alignment Categories

Global: Require an end-to-end alignment of x,y

X
y

L |

Semi-global (glocal): Gaps at th
free — usetul when one string Is sign

e beginni

ificantly s

or for finding overlaps between strings

x—
Y = ol

Local: Find the highest scoring alignment betwee

of X and y’ a substring of y — usefu

X*

y

ng or end o

norter than t

X Ory are

ne other

X s

Y i

for finding similar reg
strings that may not be globally similar

N X’ a substring

IONS 1IN

Alignment Categories Motivation

Global: x and y are similar proteins from closely-related species

x—

il
y

Semi-global (glocal): x and y are sequencing reads we are

trylng to assemb
of one matches t

e. We want to find reads where the right end (suffix)

ne left end (prefix) of another.

X o
T ———— o X

y

y i

Alignment Categories Motivation

Local: x and y are similar protei

ns from po

lt's possible and somewhat
common for specific domains to
be conserved, but not the entire

orotein sequence / structure.

entially distantly re

species. We don't expect the en
certain "domains” should be.

ire protein

0 be conserved, b

X*

y

ated

Ut

Semi-global Alignment Example

Semi-global (glocal): Gaps at the beginning or end of x or y are
free. Useful when one one string is significantly shorter than the other
or we want to find an overlap between the suffix of one string

and a prefix of the other

sometimes called “cost-tfree-ends” or “fitting” alignment

Y =L y

sometimes called “overlap™ alignment

Motivation:
Useful for finding similarities that global
alignments wouldn’t. Also, can view “read
mapping” as a variant of the semi-global
alignment problem. Want to align entire read but
it's a tiny fraction of the genome. Note: won't use
semi-global alignment with the full genome for
read mapping in practice.

Semi-global Alignment Example

Semi-global (glocal): Gaps at the beginning or end of x or y are
free — one useful case is when one string is significantly shorter than
the other

sometimes called “cost-free-ends” or “fitting” alignment

X

We'll discuss the “fitting” variant for in the next few
slides for simplicity, but the same basic idea applies
for the “overlap” variant as well.

Recall: Global Alignment Matrix

OPT(i,j) contains the score for the best alignment between:

the first i characters of string x [prefix i of x|
the first j character ot string y [prefix j ot y] NOTE: observe the non-standard

notation here; OPT(i,j) is referring

to column i, row | of the matrix.
OPT(i-1, j)

OPT(i, j)
——

(o))
)]
«Q

Y J 5 | 59
P AL TS OPT(i, j-1)
3 | 3¢ k\ _//
2 | 2 OPT(i-1, j-1)
1 19

O | O |19g]l29 39149 |59 |69 |79 |8g|9g | 10g | 11g | 129

o 1 2 3 4 5 6 7 8 9 10 11 12

How to do semi-global alignment”

M-*Sgap
3-Sgap
Z'Sgap
1'Sgap
0 1-Sgap = 2'Sgap = 3°Sgap N*Sgap

Start with the original global alignment matrix

How to do semi-global alignment”

m'Sgap

0 0 0 0 0

,\ .
change the base case — allow gaps beforey

How to do semi-global alignment”

M-Sgap O(n,m)
3-Sgap
2 Sgap
1-Sgap
0 0 0 0 0
X

start traceback at max OPT(i,m) — this allows gaps after y; why"

0O<i<n

Semi-global alignment example

and this gap aftery

o)

M-*Sgap

/ O(n,m)

We allow this gap betore y

Semi-global Alignment

What Is the and different between the “global”
and semi-global (“fitting”) alignment problems?

*fassuming |y| < [x| and we are “fitting” y into X

Global Semi-global (“fitting”)
(Score(a’;z-, y;) +OPT(i—1,5—1) rscore(a:i, y;) +OPT(i—1,5 —1)
OPT(4,j) = max { Sgap + OPT(i — 1, §) OPT(i,j) = max } Sgap + OPT(i — 1, 5)
| Sgap + OPT(z,7 — 1) Sgap + OPT(i,5 — 1)
Base case: OPT(i,0) = i X Sgap Base case: OPT(i,0) =0
Traceback starts at OPT(n,m) Traceback starts at max OPT(j,m)
O<j<n

Semi-global Alignment

T'he recurrence remains the same, we only change
the base case of the recurrence and the origin of the
backtrack

1) Ignore gaps before x —_— change base case;
ODT(O,J) =0
lgnore gaps after x — change traceback;
) ° o start from max OPT(n,j)
<j<m
3) Ignore gaps beforey EE— Chag%e (ﬁ)%\;e_coase;

change traceback;
start from max OPT(i,m)

0O<i<n

4) lgnore gaps aftery —

Semi-global Alignment
1

lgnore gaps betore x

)
)

2) lgnore gaps after x
3) Ignore gaps before y
4) Ignore gaps aftery

Types of semi-global alignments

use mods 384 use mods 1&4
s X

x* y L

y
use mods 1&2 use mods 2&3
Xq X

y — y

Local Alignment
d ?
b .

Local alignment between a and b: Best alignment between a subsequence
of a and a subsequence of b.

q 1q00

P&s

YP_003630421
¥F - -
u

ermincola potens .
putative PASAPAC :CBS_pair

™ lonai hi -

2p_06383321 (el —

Arthrozpira platen

malti-zensor hybri .

HiskA REC
3 seoerces Qe e e = = e = = |
Arthrozpira r
two-corgonent hubr HATPase_c

2 Segquences . .
frethroorire platen | Motivation:
HiskA_2
3 seoences i e e S
Ao 2 Lo Many genes are

GGDEF

siricke, composed of domains,

s seauences e

Bacteria

diguanylate cyclas EaL W q iCh a re
e subsequences that

Desulfuromonadales
diguanylate cyclas

toct perform a particular

Bacteria
diguanylate cyclas

3 sequences e = @D -G function.

Vibrio
GGDEF family prote

New meaning of entry of

matrix entry:

OPT(i, j) = best score

between:

some suffix o

- X[1...

Local Alignment

]

some suffix of y[1...]]

Same base-case

trick we used In semi-global alignment

> > 0O O 4 4 O » O

Best alignment between

a suffix of x[1..5] and a

suffix of y[1..5]

0

0

0

0

8

9

10 11
G A A

T

12
C

X

Local Alignment

New meaning of entry of matrix
entry:

OPT(i, j) = best score between:
some suffix of x[1...1]

some suffix of y[1...]]

What else do we need to
nange to allow local
alignments?

O

Hint: The empty alignment is
always a valid local alignment!

Same base-case

y

> 0 66 4 4 O » O

>

2
1
0

Best alignment between
a suffix of x[1..5] and a
suffix of y[1..5]

o)

O10]10}]1O0JO}O}fO}|O0O]O0]O

0
0

trick we used in semi-global alignment

3 4 5 6 7 8 9 10 11 12
G G T A T G A A T C

X

How do we ftill in the local

alignment matrix?

score(z;,y;) + OPT(i— 1,57 —1) (I)

OPT(7,j) = max

0

(1), (2), and (3);: same cases as before:
match x and y, gap in'y, gap in x

New case: O allows you to say the best
alignment between a suffix of x and a

suffix of y is the empty alignment.

Lets us “‘start over’”’

<

> r O O®© 4 4 o » O
© = N W » OO O N o ©

Sgap T OPT (i —1,7) (2)
sgap +OPT(1,5 1) 3,

Best alignment between
a suffix of x[1..5] and a
suffix of y[1 ..|5]

0

0

0

o o o o o o o o o o o

Q) W o
- O o
- ~ o

10 11 12
A T C

Local Alignment

® |nitialize first row and first column to be O.

® The score of the best local alignment is the largest
value in the entire array.

® To find the actual local alignment:

® start at an entry with the maximum score
® traceback as usual
® stop when we reach an entry with a score ot O

Local Alignment in the DAG
framework

%Y
O~C~0-C

VAVEvS
O—O—0O—-0

avavs
OnOnOn®

Local Alignment in the DAG
framework

Add O score edge
from the source
to every node

--— e E O mom o
-____- -.__-.
- -y
-

- gy

-

-
-~

-

-
- -
-
o=
-~
~§
~

-

-

—;—’

- -
zz8°T 0

-,
s

,
7%

»&

Local Alignment in the DAG

framework ot]
Add 0 score edge U score edge

from every vertex to
from the source
the target vertex
{0 every vertex

Local Alignment Example #1

local align(“AGCGTAG”, “CTCGTC")

* A G C G T A G
* 0 0 0 0 0 0 0 0
C 0 0 0 10 3 0 0 0
T 0 0 0 3 5 13 6 0
C 0 0 0 ™10 3 6 8 1
G 0 0 10 3520 13 6 18
T 0 0 3 5 13 ™30 23 16
C 0 0 0 13 6 23 25 18
Score(match) = 10 Note: this table written top-to-bottom
Score(mismatch) = -5 instead of bottom-to-top

Score(gap) = -7

Local Alignment Example #2

local align(“bestoftimes”, “soften”)

* b e S t O f t 1 m e S
* 0 0 0 ‘\O 0 0 0 0 0 0 0 0
S 0 0 0 10 f—B,R\O 0 0 0 0 0 10
O 0 0 0 3 5 13 6 0 0 0 0 3
f 0 0 0 0 0 6 ‘23 ‘&6 9 2 0 0
t 0 0 0 0 10 3 1l6 33 26 19 12 5
e 0 0 10 3 3 5 9 26 28 21 29 22
n 0 0 3 5 0 0 2 19 21 23 22 24
Score(match) = 10 Note: this table written top-to-bottom
Score(mismatch) = -5 instead of bottom-to-top

Score(gap) = =7

More Local Alignment Examples

local align(”“catdogfish”,

Q O Q. *

local align(“mississippi”,

O nn N - %

*

0
0
0
0

*

O O O O O

O OO OoONnN

m

O O O O O

a

0
0
0
0

1
0
10

3
0
0

lldogll)
t d O g f 1 S
0.0 O O 0 0 0
0o 0 .3 0 0 0 o
0 3 20 13 6 0 0
0 0 13 39 23 16 9

uissp")
S s 1 s S 1 P
0 0O 0 0
3 o \o 0 10 3
20 13 6 \o 13 6 5
13 30 30 23 16
6 23 25 18 23 25 3

local align(“aaaa”, "“aa")

O

*

0
0
0

a
0
10
10

a a a

0

10 \10 10
20 20 20

N O OO S

Score(match)
Score(mismatch)

Score(gap)

-/

10

-5

Local / Global Recap

Alignment score sometimes called the "edit distance” between two
strings.

Edit distance is sometimes called Levenshtein distance.

Algorithm for local alignment is sometimes called “Smith-Waterman”

Algorithm for global alignment is sometimes called “Needleman-
Wunsch”

Same basic algorithm, however.

Underlies BLAST

General Gap Penalties

AAAGAATTCA VS AAAGAATTCA
A-A-A-T-CA ' AAA----TCA

These have the same score, but the second one is often more
plausible.

A single insertion of “GAAT" into the first string could change
it into the second — Biologically, this is much more likely as x
could be transformed into Yy in “one fell swoop”.

® Currently, the score of a run of k gaps is Sgap * k

® |t might be more realistic to support general gap penalty, so
that the score of a run of k gaps is Igscore(k)l < [(sgap *x K)I.

® Then, the optimization will prefer to group gaps together.

General Gap Penalties — The Problem

AAAGAATTCA VS AAAGAATTCA
A-A-A-T-CA ' AAA---=-TCA

Previous DP no longer works with general gap penalties.

Why?

General Gap Penalties — The Problem

AAAGAATTCA VS AAAGAATTCA
A-A-A-T-CA ' AAA---=-TCA

The score of the last character depends on details of the
previous alignment:

AAAGAtC AAAGAArC

AAA--4- vs. AAA-— -} -

We need to “know"” how long a final run of gaps is in order
to give a score to the last subproblem.

General Gap Penalties — The Problem

The score of the last character depends on details ot the
previous alignment:

Knowing the optimal alignment at the substring
ending

- ‘ AAA-— |-

AAAGAAC Vs AAAGAATC
AAA--

Doesn't let us simply build the optimal alignment
ending

Three Matrices

We now keep 3 different matrices:

M(i,j) = score of best alignment of x[1..i] and y[1..j] ending with a character-
character match or mismatch.

X(i,]) = score of best alignment of x[1..i] and y[1..j] ending with a gap in X.

Y(i,j) = score of best alignment of x[1..i] and y[1..j] ending with a gap in Y.

M(Z N 17] N 1)
M(i, 7) = score(x;,y,;) + max < X(i — 1,5 — 1)
Y(2—1,7—1)

M(z,7 — k) + gscore(k) for 1 <k <y

X (. 7) = ma
(4,) = m X{Y(@‘,j — k) + gscore(k) for 1<k <

M(i — k,j) + gscore(k) for 1 <k <i

Y(i.) =
(#,7) = max {X(z — k,7) + gscore(k) for1 <k <i

The M Matrix

We now keep 3 different matrices:

M(i,j) = score of best alignment of x[1..i] and y[1..j] ending with a character-
character match or mismatch.

X(i,]) = score of best alignment of x[1..i] and y[1..j] ending with a gap in X.
Y(i,j) = score of best alignment of x[1..i] and y[1..j] ending with a gap in Y.

By definition, alignment
ends in a match/mismatch.

\/ M(Z N 17] o 1)
M(z,j) = score(x;,y;) + max X(i — 1,5 — 1)
Y(2—1,7—1)

A)

Any kind of alignment is allowed
before the match/mismatch.

The X (and Y) matrices

i |f k decides how long to make
X G:—— _ the gap.
Y ,%CGTG We have to make the whole
e j gap at once in order to know
l how to score it.
X(i. /) M(i,5 — k) + gscore(k) for 1 <k <j
1, 7) = max o |
/ Y (7,7 — k) + gscore(k) for1l <k <y
ko
X G———-—
y -CGTG

The X (and Y) matrices

|k
. R
y ACGTG
-k]
X(i, f) = max {M(i,j — k) + gscore(k)
Y (2,7 — k) + gscore(k)
Ti K
) S
y -CGTG
j-k |

k decides how long to make
the gap.

We have to make the whole
gap at once in order to know
how to score it.

for 1 <k <y
for 1 < k <y

This case is automatically

handled.

Running Time for Gap Penalties

M(i— 1,5 — 1)
M(i, j) = score(z;, y;) + max § X(i — 1,j — 1)
Y(z2—1,7—1)
X(i, /) = max 4 M(0:J = k) + gscore(k) for 1 <k <
Y(i,7 — k) + gscore(k) for1l <k <}
Y (7,7) = max M(Z B k’J) + gscore(k) {Of < k< Z
X(i—k,7) + gscore(k) forl<k<iq

Final score is max {M(n,m), X(n,m), Y(n,m)}.

How do you do the traceback?

Runtime:

® Assume [XI = Yl = n for simplicity: 3n2 subproblems

® 2n2subproblems take O(n) time to solve (because we have to try all k)

= O(n3) total time

-gscore(k)

Affine Gap Penalties

® ((n3) for general gap penalties is usually too slow...

® \We can still encourage spaces to group together using a special
case of general penalties called affine gap penalties:

Ostart = the cost of starting a gap

Jextend = the cost of extending a gap by one more space

QSCO"e(k) = QOstart T (k'1) X Jextend

less restrictive = more restrictive

General gap penalty Convex gap penalty Affine gap penalty

\

(k‘1)*gextend

-gscore(k)
-gscore(k)

Ostart

length of gap length of gap 1 length of gap

Benetit of Affine Gap Penalties

® Same idea of using 3 matrices, but now we don‘t need to search
over all gap lengths, we just have to know whether we are starting
a hew gap or not.

match(i,))
L
- gSs *

ge

A
ne
3
ol '
€ s Finite St
ate VI
achin
e

m
atch(i,))

gs t
/ l
match(i,)) |

Affine Gap Penalties

M(Z o 17] o 1)
M(2, 7) = score(z;,y;) + max ¢ X(i — 1,5 — 1) If previous
. . : alignment ends in
(ngls)match Y(Z o 17] - 1) (mis)match, this is
etween
X and y /_\/a New &4p
Ootart T M(z) — 1) If we're using the

X matrix, then

X(Zv]) = mMax § Zextend T Wwe re extending a

S Estart _|_Y 7/] _1
If we're using the
M(i — 1.1 Y matrix, then
o Sstart (’ ‘7) we're starting a
Y(Z,]) — IMaX § Zqtart X(Z — 1,]) new gap in this
gap iny

Toxtend + Y (2 — 1,7) string.

Affine Base Cases (Global)

M(0, i) ="“score of best alighment between 0 characters of x and i

characters of y that ends in a match” = - because no such alignment can

exist.

X(0, i) ="“score of best alighment between 0 characters of x and i characters
of y that ends in a gap in x” = gap start + (i-1) ¥ gap extend because this

alighment looks like:

YYYYYYYYY

X(i, 0) ="score of best alignment between i characters of x and 0

characters of y that ends in a gap in X" = -0

XX XXXXXXX=-

< not allowed

M(i, 0) = M(0,i) and Y (0, i) and Y(i, 0) are computed using the same logic as

X(i, 0) and X(O, i)

Affine Gap Runtime

e 3mn subproblems
* FEach one takes constant time
* TJotal runtime O(mn):

 back to the run time of the basic running time.

Traceback

e Arrows now can point between matrices.
* The possible arrows are given, as usual, by the recurrence.

e E.g.What arrows are possible leaving a cell in the M matrix!?

Why do you “need” 3 functions?

e Alternative WRONG algorithm:

M(1i,]) = max(
M(i-1, j-1) + cost(xi, V3),
M(1i-1, J) +(9start 1f Arrow(i-1, J) != €—, else Jextend),
M(j, 1i-1) + (9start 1f Arrow(i, J-1) !=l ; else Jextend)

WRONG Intuition: we only need to know whether we are starting a gap or extending a
gap-

The arrows coming out of each subproblem tell us how the best alignment ends, so we can
use them to decide if we are starting a new gap.

The best alignment
up to this cell ends
in a gap.

PROBLEM: The best alignment for strings
e x[I..i] and y[I..j] doesn’t have to be used in

The best alignment the best alighment between

up to this cell ends] .
‘ in a match. X[I..|+|] and)’[|]+|]

Why 3 Matrices: Example
match = 5, mismatch = -2, gap = -|,gap start = -10

x=CARTS, y=CAT

CART OPT(4, 3) = optimal score=|5-10=5
CA-T /Y
CARTS WRONG(5,3) = 15-10- 10 = -5
CA-T-

CARTS OPT(5,3)= 10-2-10- | =-
CAT--

§ this is why we need to keep the X and Y matrices around.
they tell us the score of ending with a gap in one of the sequences.

Side Note: Lower Bounds

e Suppose the lengths of x and y are n.

 C(Clearly, need at least {)(n) time to find their global alignment
(have to read the strings!)

e The DP algorithms show global alignment can be done in O(n?) time.

#: Backurs, Arturs, and Piotr Indyk. "Edit distance cannot be computed in strongly subquadratic time (unless SETH is false)." Proceedings of the forty-seventh annual ACM symposium on Theory of computing.
ACM, 2015.
! x

Side Note: Lower Bounds

e Suppose the lengths of x and y are n.

 C(Clearly, need at least {)(n) time to find their global alignment
(have to read the strings!)

e The DP algorithms show global alignment can be done in O(n?) time.

e A trick called the “Four Russians Speedup” can make a similar dynamic
programming algorithm run in O(n? / log n) time.
* We probably won'’t talk about the Four Russians Speedup.

e The important thing to remember is that only one of the four authors is Russian...

(Alrazarov, Dinic, Kronrod, Faradzeyv, 1970)

* Open questions: Can we do better? Can we prove that we can’t do better?
No#t

#: Backurs, Arturs, and Piotr Indyk. "Edit distance cannot be computed in strongly subquadratic time (unless SETH is false)." Proceedings of the forty-seventh annual ACM symposium on Theory of computing.
ACM, 2015.
! x

Recap

* Local alignment: extra“0” case.
* General gap penalties require 3 matrices and O(n3) time.

 Affine gap penalties require 3 matrices, but only O(n?) time.

